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8.1 DISCRET/CONTINU

■Analogie vecteurs/signaux 
■Origine des signaux discrets
■Représentation continue d’un signal discret
■ Interpolation
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Analogie vecteurs/signaux

6

Produit scalaire discret: 〈f, g〉 =
+∞∑

n=−∞
f [n]g[n]

n

· · ·· · ·

f [n]

1 2 3-1 0

Signal discret = élement d’un espace fonctionnel discret

Signal = séquence de nombres réels: vecteur de dimension infinie (mais dénombrable).

Notations:
(
f [n]

)
n∈Z

ou f [·] ou f ∈ V (Z) ou, simplement, f [n]

V (Z) : Espace fonctionnel à définir
(
p. ex. RZ, �2(Z) ou �∞(Z)

)
∀α, β ∈ R, f, g ∈ V (Z) ⇒ αf + βg ∈ V (Z)

Vecteur dans R
N

Notation: f = (f1, f2, . . . , fN ) ∈ R
N

Structure d’espace vectoriel:

∀α, β ∈ R, f ,g ∈ R
N ⇒ αf + βg ∈ R

N

Produit scalaire: 〈f ,g〉 =
N∑

n=1

fngn

fN
. . .f2f1
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Définitions
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f [n]

f (t)
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f [·] ∈ R
Z

Noter la différence avec un signal à temps continu qui est une fonction de la variable

réelle

f

∣∣∣∣∣ R → R

t �→ f(t)

Un signal discret est un signal à temps discret. Mathématiquement, c’est une fonction

f de la variable entière n (ou une séquence bi-infinie à valeurs réelles)

Notation: f

∣∣∣∣∣ Z → R

n �→ f [n]

R
Z est l’ensemble de toutes les séquences (f [n])n∈Z, f [n] ∈ R.
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Et avant d’aller plus loin...

■Un des succès les plus importants du discret / 
numérique
■La compression de données

codage audio mp3
codage image jpg, j2k
codage video mpeg2, mpeg4, h.264

8
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mp3 schématique

9
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La compression d’images fonctionne
de la même manière

75% des coefficients effacés !

La compression d’images fonctionne
de la même manière
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Origine des signaux discrets

échantillonneur
(fréquence 1/T)

Un signal discret est souvent le résultat de l’échantillonnage uniforme d’un signal 
continu

Il existe aussi des signaux qui sont naturellement discrets (et souvent
quantifiés):

•  phénomènes quantiques (p.ex. comptage de photons)
•  événements ponctuels (p.ex. nombre d’abstentionnistes lors d’élections)

13

f(t) f [n] = f(nT )
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Représentation continue d’un signal discret

Dans le cas d’un signal discret obtenu par échantillonnage, le lien  est la 
multiplication par le peigne de Dirac à la fréquence 1/T

f(t) fT (t)

14

Un signal discret f [n] peut se représenter de manière équivalente à l’aide d’un signal

continu fT (t)

fT (t) =
∑
n∈Z

f [n] · δ(t − nT )

∑
n∈Z

δ(t − nT )
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Interpolation

ϕ(t) = sinc(t)ϕ(t) = rect(t)

ϕ(t) = tri(t)

plus proche voisin

linéaire

Shannon

finterpolée(t) = fT (t) ∗ ϕ(t/T )

f(t) fT (t)
ϕ(t/T )

15

À l’aide de la représentation continue fT (t) du signal échantillonné f [n], on peut

exprimer la version interpolée de ce signal en utilisant une fonction d’interpolation

ϕ(t) (sinc(t), rect(t), tri(t), par exemple)

∑
n∈Z

δ(t− nT )
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■L’impulsion discrète δ[n]
■Le saut unité discret  u[n]
■Signaux binaires et rectangulaires
■La fonction polynôme causal discret 
■L’exponentielle causale discrète
■Signaux périodiques
■Représentation canonique des signaux discrets

8.2 SIGNAUX TYPE

16

sN+ [n]
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L’impulsion discrète δ[n]  (ou de Kronecker)

δ[n]

Cette fonction est identique à la suite       de Kronecker. 

 n’est pas une version échantillonnée de la distribution de Dirac δ[n] δ(t)

δn
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δ[n] =

⎧⎨
⎩1, si n = 0

0, sinon
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Le saut unité discret  u[n]
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u[n] =

{
1, si n ≥ 0

0, sinon

C’est une version échantillonnée de la fonction saut unité continue

u[n] = u
(
(n+ 1

2 )T
)

Remarque: u[n]− u[n− 1] = δ[n]

u[n]
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Signaux binaires et rectangulaires

19

1

0 4

Cas particuliers

Saut indiciel: u[·] = [0...∞)[·] = Z≥0
[·]

Impulsion de Kroneker en n = n0: δ[· − n0] = {n0}[·]

E = {0, 1, 2, 3, 4} = [0 . . . 4]

Fonction indicatrice

Soit un ensemble E d’indices discrets. On définit

E[n] =

{
1 si n ∈ E

0 si non.

Signaux rectangulaires

E = {n1, . . . , n2} avec n1 < n2 ∈ Z est un interval discret denoté par [n1 . . . n2]

[n1...n2][n] =

{
1 si n1 ≤ n ≤ n2

0 sinon.
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L’exponentielle causale discrète
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Version échantillonnée de la fonction exponentielle causale 
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an u[n] =

{
an, si n ≥ 0

0, sinon

anu[n] = u(t) exp

(
t

T
log a

)∣∣∣∣
t=nT
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La fonction polynôme causal discret

s+2[n]

Pour              on définitN ≥ 1

21

sN+ [n] =

⎧⎨
⎩

(n+1)(n+2)...(n+N)
N ! , si n ≥ 0

0, sinon

et si N = 0, on pose s0+[n] = u[n]

Remarque: sN+ [n] − sN+ [n − 1] = sN−1
+ [n].

sN+ [n]

Par ailleurs, il faut noter que sN+ [n] =
(

n + N

n

)
u[n].
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Signaux périodiques

Un signal périodique continu échantillonné n’est pas nécessairement périodique.
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Un signal discret f [n] est périodique si et seulement si, pout n ∈ Z, il existe un

nombre entier N tel que

f [n+N ] = f [n]

f [n] = cos(πn/2 + 0.1) f [n] = cos(3n/2 + 0.1)
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Représentation canonique des signaux discrets

23
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f [3]δ[· − 3]
f [·]

f [0]δ[·]

f [1]δ[· − 1]

f [2]δ[· − 2]

Tout signal discret peut s’exprimer comme une combinaison linéaire d’impulsions dis-

crètes décalées δ[· − n0]

f [n] =

+∞∑
n0=−∞

f [n0] · δ[n− n0] ou f [·] =
∑
n∈Z

f [n]δ[· − n]

f [−1]δ[·+ 1]
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8.3 QUELQUES OPÉRATEURS

■Décalage
■Echantillonnage
■Transformations ponctuelles
■Quantification

24
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Opérateur de décalage S = “Shift”

25

f [n] �→ S{f}[n] = f [n− 1] Forme concise: Sf = f [· − 1]

(w0, w1) = (1,−1)

Exemple: Opérateur de différences

(I− S)f = f [·]− f [· − 1]

Propriétés

Linéarité:

S
{
af1[·] + f2[·]

}
[n] = aS{f1}[n] + S{f2}[n] pour tout a ∈ R

Itérations: Sk{f}[n] = f [n− k]

Identité: S0 = I

Structure de semi-groupe: Sk1Sk2 = Sk1+k2 pour tout k1, k2 ∈ Z

Combinaison linéaires of K décalages

Sw{f} =

K−1∑
k=0

wkS
k{f} =

K−1∑
k=0

wkf [· − k]

Poids: w = (w0, . . . , wK−1) ∈ R
K
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Echantillonnage
f [n] �→ (M ↓)f [n] = f [Mn]

26

• Sous-échantillonnage:

• Sur-échantillonnage:

Sf = · · · f [−1] f [0] f [1] · · ·
f = · · · f [0] f [1] f [2] · · ·

(2 ↓)f = · · · f [0] f [2] f [4] · · ·

f [n] �→ (↑ M)f [m] =

⎧⎨
⎩f [n], si m = Mn

0, sinon

(2 ↑)f = · · · 0 f [0] 0 f [1] 0 · · ·
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Transformations ponctuelles

27

Soit T : R → R une fonction réelle donnée.

Principe: chaque échantillon du signal subit la même transformation scalaire T.

Non-linéarité ponctuelle T (f)

f [n] �→ T (f [n])

Cas particuliers

Seuillage (binarisation):

f �→
{

1, si f ≥ β (seuil)

0, sinon

Sigmoïde: f �→ 1
1+e−α(f−β)

Rectified linear unit (pour réseau de neurones):

f �→ ReLU(f ;β) = (f − β)+, β ∈ R (biais)

β

β

8-Unser-Vandergheynst / Sig & Sys II

Application: CNN (convolutional neural networks)

28

Structure pyramidale: U-net (par re-échantilonnage)

Fonction d’activation d’un neurone: ReLU ou sigmoïde

Module de convolution: poids wk partagés au travers d’une fenêtre glissante

Tconv{f} =

K∑
k=0

wkS
k{f} =

K∑
k=0

wkf [· − k]
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8.4 ESPACES VECTORIELS DE SIGNAUX

■Espaces des signaux à énergie finie
■Espaces vectoriels discrets  
■Produit scalaire étendu
■Exemples 

29

�p(Z)
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Structure mathématique sous-jacente

Les signaux discrets sont mathématiquement plus simples que les signaux 
continus:

✓Il n’y a pas de notion de “presque partout”
✓Un signal n’a pas de valeurs infinies
✓Il n’y a pas de notion de continuité, dérivabilité, etc…

✓On peut avoir une bonne approximation d’un signal discret d’énergie finie à 
l’aide d’un nombre fini de ses valeurs

30

Donc, on peut développer une théorie qui est plus directement accessible  
aux étudiants ingénieurs que la théorie des distributions, établie de Laurent Schwartz.

f [n] �= ∞, ∀n ∈ Z
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Espaces des signaux à énergie finie

31

�2(Z) est un espace de Hilbert équipé avec le produit scalaire discret

〈f, g〉�2 �
=

∑
n∈Z

f [n]g∗[n]

Espace des signaux discrets à énergie finie

�2(Z) =
{
f : Z → C : ‖f‖2�2

�
=

∑
n∈Z

|f [n]|2 < ∞}

Exemples:

anu[n] ∈ �2(Z) pour |a| < 1 (exponentielle causale décroissante)

{δ[· −m]}m∈Z est une base orthonormale de �2(Z)

Inégalité de Cauchy-Schwarz

|〈f, g〉�2 | ≤ ‖f‖�2‖g‖�2 pour tout f, g ∈ �2(Z)

8-Unser-Vandergheynst / Sig & Sys II

Normes discrètes non-Euclidiennes 

32

Normes-�p pour p ∈ [1,∞]

‖f‖�p �
=

⎧⎪⎪⎨
⎪⎪⎩

(∑
n∈Z

|f [n]|p
) 1

p

, si p ∈ [1,∞)

supn∈Z

∣∣f [n]∣∣, si p = +∞.

Propriétés caractéristiques d’une norme

Non-négativité: ‖f‖�p ≥ 0 avec ‖f‖�p = 0 ⇔ f = 0

Homogenéité: ‖α · f‖�p = |α| · ‖f‖�p pour tout α ∈ C

Inégalité triangulaire: ‖f + g‖�p ≤ ‖f‖�p + ‖g‖�p

Propriété de hiérarchisation

‖f‖�∞ ≤ ‖f‖�q ≤ ‖f‖�p ≤ ‖f‖�1

pour tout signal f [·] et 1 ≤ p ≤ q ≤ ∞.
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Espaces vectoriels discrets

33

Propriétés d’imbrication (embeddings)

�1(Z) ⊆ �p(Z) ⊆ �q(Z) ⊆ �∞(Z)

pour 1 ≤ p ≤ q ≤ ∞.

Espaces de signaux discrets �p(Z) pour p ≥ 1

�p(Z) =
{
f : Z → R : ‖f‖�p < ∞}

Cas particuliers

p = 2: �2(Z) est l’espace des signaux discrets à énergie finie

p = 1: �1(Z) est l’espace des signaux discrets sommables (en valeur absolue)

p = ∞: �∞(Z) est l’espace des signaux discrets bornés

Ce sont des espaces de Banach (c-à-d. des espaces normés complets)

Unser-Vandergheynst / Sig & Sys II 8-

Produit scalaire étendu

34

Extension du produit scalaire = produit de dualité

Pour f ∈ �p(Z) et g ∈ �p′(Z) où p, p′ sont des indices conjugués, on définit:

〈f, g〉 �
=

∑
n∈Z

f [n]g[n]

Propriété: L’application (f, g) �→ 〈f, g〉 est une forme bilinéaire
et continue �p(Z)× �p′(Z) → R.

Definition: Les indices p, p′ ∈ [1,∞] forment une paire conjuguée si
1

p
+

1

p′
= 1.

Par exemple: (p, p′) = (1,∞), (2, 2), (∞, 1)

Inégalité de Hölder

Pour tout f ∈ �p(Z) et g ∈ �p′(Z) où p, p′ sont des indices conjugués, on a:∣∣〈f, g〉∣∣ ≤ ‖f‖�p‖g‖�p′
Généralization de l’inégalité de Cauchy-Schwarz (p = p′ = 2).



Unser-Vandergheynst / Sig & Sys II 8-

Signaux à support fini

35

n

f [n]

1 2 3-1 0 10

Support(f) = {2, 3, 4, 5, 7, 8, 10}

longueur = 10-2+1=9

Support d’un signal

F = support(f) = {n : f [n] �= 0} (ensemble des indices actifs)

Longueur ou taille du signal: max(F)−min(F) + 1

Le support est dit fini (ou compact) si sa longueur est finie.

Troncation temporelle/restriction d’un signal

Soit un ensemble E d’indices discrets temporaux. On définit

fE[n]
�
= f [n] · E[n] =

{
f [n], si n ∈ E

0, sinon

Unser-Vandergheynst / Sig & Sys II 8-

Signaux bornés vs. non-restreints

36

NB: Les distinctions sont dues exclusivement au comportement à l’infini.

Definition: Le signal discret f est dit

• borné ⇔ supn∈Z

∣∣f [n]∣∣ < ∞ ⇔ f ∈ �∞(Z)

• à support fini ssi il existe n0 ≤ n1 ∈ Z tel que f[n0...n1][·] = f [·] ∈ �∞(Z).

• localement sommable/borné si f[−N...N ][·] ∈ �1(Z) ⊆ �∞(Z) pour tout N ∈ N.

Les espaces vectoriels correspondant sont dénotés par �∞(Z), D(Z), D′(Z) = R
Z.

Propriétés d’inclusion (pour 1 ≤ p ≤ q ≤ ∞)

D(Z) ⊆ · · · ⊆ �1(Z) ⊆ �p(Z) ⊆ �q(Z) ⊆ �∞(Z) ⊆ · · · ⊆ D′(Z)

Soit f ∈ D′(Z) et g ∈ D(Z) avec G = support(g) fini. Alors,∣∣〈f, g〉∣∣ ≤ ∑
n∈G

∣∣f [n]∣∣ ∣∣g[n]∣∣ ≤ ‖fG‖�1‖g‖�∞ < ∞
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Complément: Topologie de            et 

37

E: domaine de longueur finie (compact)

D′(Z)D(Z)

D(Z): l’espace des signaux “test” à support fini

e ∈ D(Z) ⇔ e[·] ∈ �∞(Z) et il existe E compact tel que e[n] = 0, ∀n /∈ E.

Une séquence de signaux (ei)i∈N converge vers e dans D(Z)

⇔ il existe E compact tel que support(ei) ⊆ E et limi→∞ ‖e− ei‖�∞ = 0.

D′(Z): l’espace non-restreint de signaux

f ∈ D′(Z) = R
Z ⇔ ∣∣f [n]∣∣ < ∞ pour n’importe quel n ∈ Z (fini).

Une séquence de signaux (fi)i∈N converge vers f dans D′(Z)
⇔ limi→∞〈fi, e〉 = 〈f, e〉 pour tout e ∈ D(Z).

Soit f ∈ D′(Z) et e ∈ D(Z) avec support(e) ⊆ E compact. Alors,∣∣〈f, e〉∣∣ ≤ ∑
n∈E

∣∣f [n]∣∣ ∣∣e[n]∣∣ ≤ ‖fE‖�1‖e‖�∞ < ∞

8-Unser-Vandergheynst / Sig & Sys II

Exemples de catégorisation

38

g[n]f [n]

non-défini! �∞(Z)× �∞(Z)

�2(Z)× �2(Z)

∞∑
n=0

(
1
6

)n
=

1

1− 1
6

u[n]
(
1
2

)n
u[n]

(
1
3

)n
an

(−1)n

−aδ[n+ 1] + δ[n] −a · a−1 + 1 = 0

Signaux non-restreints: f [·] /∈ �∞(Z)

Exponentielles bilatérales: n �→ an avec a �= 0

Polynômes discrets: sN+ [·] avec N ≥ 1.

∀n, p0[n] = 1 ∈ �∞(Z)

〈f, g〉 =
∑
n∈Z

f [n]g[n]

D′(Z)×D(Z)

Signaux à support fini: f [·] ∈ D(Z)

fN [·] =
N−1+n0∑
n=n0

f [n]δ[· − n]

Signaux bornés: f [·] ∈ �∞(Z)

Exponentielle causale avec |a| < 1: an u[n] ∈ �1(Z) ⊆ �2(Z)

(Co-)sinusoides discrètes avec ω0 ∈ R: n �→ A cos(ω0n) /∈ �1(Z)
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8.5 SYSTÈMES LINÉAIRES DISCRETS

■Analogie matrice/système linéaire
■Définition et représentation
■Systèmes LID
■Convolution discrète
■Stabilité des opérateurs LID
■Algèbre des opérateurs LID
■Exemple de calcul
■Table de convolutions discrètes

39
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Analogie matrice/système linéaire

40

 Sytème linéaire

x y
H

en hn = H · en

Méthode: série d’excitations élémentaires {en}n=1,...,N

Transformation linéaire: R
N → R

N

y = H · x ⇔ ym =
N∑

n=1

hm,nxn

Entrée: x = (x1, x2, . . . , xN )

Sortie: y = (y1, y2, . . . , yN )

Matrice H : [H]m,n = hm,n, m, n ∈ {1, . . . , N}

Identification du système matriciel

But: déterminer les éléments de la matrice H = [h1 · · · hN ]

Sytème linéaire en temps discret:

y[m] =
∑
n∈Z

H[m, n]x[n]

Propriété de la base canonique: ∀x ∈ R
N , 〈x, en0

〉 = xn0

Contrepartie en temps discret: impulsions de Kronecker n �→ δ[n − n0]

〈f, δ[· − n0]〉 =
∑
n∈Z

f [n] δ[n − n0] = f [n0]
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Définition et représentation
Les systèmes linéaires discrets sont des opérateurs linéaires qui agissent sur les 
signaux discrets:

Rappel: linéarité  

Exemples
• Les opérateurs de décalage et d’échantillonnage sont linéaires
• Les opérateurs de quantification ne sont pas linéaires
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f [n] g[n]T{·}

⇔ T{a1f1 + a2f2} = a1T{f1}+ a2T{f2} pour tout a1, a2 ∈ R (ou C)

Représentation: Un système linéaire discret T est entièrement décrit par la donnée

d’une fonction de deux variables entières H[n, k] telle que

T{f}[n] =
∑
k∈Z

H[n, k] f [k]

Preuve

1. Représentation canonique: f [·] = ∑
k∈Z

f [k]δ[· − k]

2. Linéarité de T: T
{
f
}
[n] =

∑
k∈Z

f [k] T
{
δ[· − k]

}
[n]︸ ︷︷ ︸

H[n,k]
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Systèmes linéaires invariant par décalage (LID)

Remarque: il y a équivalence formelle entre signal et système LID.
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Les systèmes LID sont des systèmes linéaires discrets qui sont en outre

invariants par décalage

T{Skf} = SkT{f} pour tout k ∈ Z

Exemples

S est LID, de réponse impulsionnelle h[n] = δ[n− 1]

(M ↑) et (M ↓) ne sont pas LID

Ainsi, un système est LID si et seulement si il est linéaire et

H[n,m] = T
{
δ[· −m]

}
[n]

= T
{
δ
}
[n−m]

= H[n−m, 0] = h[n−m]

c’est-à-dire, si et seulement s’il existe une réponse impulsionnelle discrète telle que

T{f}[n] =
∑
m∈Z

h[n−m]f [m]
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Convolution discrète

43

(
f ∗ (g + h)

)
[n] = (f ∗ g)[n] + (f ∗ h)[n]

(f ∗ g)[n] = (g ∗ f)[n](
f ∗ (g ∗ h)

)
[n] =

(
(f ∗ g) ∗ h

)
[n]

La convolution est une opération

• commutative: 
• associative:
• distributive par rapport à l'addition:

si h ∈ �∞(Z) et f, g ∈ �1(Z)

L'impulsion discrète est l'élément neutre de la convolution discrète:

(δ ∗ g)[n] =
∑
k∈Z

δ[k] · g[n− k] = 〈δ[·], g[n− ·]〉 = g[n]

(par changement de variable m = n− k)

=
∑
m∈Z

f [n− m] · g[m]

Soit f [·] et g[·] deux signaux discrets. Alors, leur convolution discrète est donnée par

(f ∗ g)[n] �=
∑
k∈Z

f [k] · g[n− k] = 〈f, g[n− ·]〉
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Convolution: décomposition en étape

44

Définition de la
résponse impulsionnelle

Opérateur
LID h[n]δ[n]

Invariance par 
décalageOpérateur

LIDδ[n− k0] h[n− k0]

Impulsion unitaire à k0

Linéarité
Opérateur

LID f [k0] · h[n− k0]f [k0] · δ[n− k0]

Echantillon en k0 de valeur f [k0]

Impulsion unitaire à l’origine

SuperpositionOpérateur
LID

∑
k0∈Z

f [k0] · δ[n− k0]
∑
k0∈Z

f [k0] · h[n− k0]

Signal = somme d’échantillons

= (f ∗ h)[n] = (h ∗ f)[n]
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Exemple

0.1 0 −0.2, 0.2
∗ 2 1

1 × 0.1 1 × 0 1 ×−0.2, 1 × 0.2
+ 2 × 0.1 2 × 0 2 ×−0.2 2 × 0.2

0.2 0.1 −0.4 0.2 , 0.2

}
}

ranger f[n] et g[n] 
dans l'ordre des n décroissants

effectuer les calculs comme 
dans l'algorithme de multiplication
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Soit à calculer la convolution discrète de

f [n] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.2, pour n = −1

−0.2, pour n = 0

0.1, pour n = 2

0, sinon

et g[n] =

⎧⎪⎪⎨
⎪⎪⎩

1, pour n = 0

2, pour n = 1

0, sinon

indique la séparation entre les indices

n ≤ 0 (à gauche) et n < 0 (négatif à droite)

= (f ∗ g)[n]

8-Unser-Vandergheynst / Sig & Sys II

Quand la convolution est-elle bien posée?
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Cadre non-restreint:
La convolution (h ∗ f)[n] n’est pas forcément bien définie pour tout h, f ∈ D′(Z) = R

Z.

Par contre, si l’on tronque la réponse impulsionnelle h[·] à l’interval [−N . . .N ], on a:

∣∣(h[−N...N ] ∗ f)[n]
∣∣ ≤ N∑

k=−N

∣∣h[k]∣∣ · ∣∣f [n− k]
∣∣

≤
N∑

k=−N

∣∣h[k]∣∣ max
m∈[n−N...n+N ]

∣∣f [m]
∣∣

= ‖h[−N...N ]‖�1 · ‖f[n−N...n+N ]‖�∞ < ∞

pour tout f ∈ D′(Z) et N ∈ N et n ∈ Z.

De façon similaire, si h ∈ D′(Z) et f ∈ D(Z) avec support(f) ⊆ [−N . . .N ], on a

|(h ∗ f)[n]| ≤
N∑

k=−N

max
m∈Z

∣∣f [m]
∣∣ ∣∣h[n− k]

∣∣ = ‖h[n−N...n+N ]‖�1 · ‖f‖�∞

qui montre que h ∗ f ∈ D′(Z).
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Systèmes à réponse impulsionnelle finie (RIF)

47

h[n]

Soit le système LID spécifié par l’opérateur de convolution discret Sh : f �→ h ∗ f .

Le système est à réponse impulsionnelle finie ssi support(h) est fini;

c.-à-d. s’il existe n1 ≤ n2 ∈ Z tels que h[n] = 0, ∀n /∈ [n1 . . . n2].

Soient h1[·], h2[·] de longueur respective N1 et N2. Alors (h1 ∗ h2)[·] est à support fini

de longueur au plus (N1 +N2 − 1) avec ‖h1 ∗ h2‖�∞ ≤ ‖h1‖�1 · ‖h2‖�∞ < ∞.

Normes équivalentes: ‖hi‖�∞ = max
n∈Z

|hi[n]| ≤ ‖hi‖�1 ≤ Ni‖hi‖�∞ , i = 1, 2

Propriété

La convolution de deux signaux de support fini est à support fini:

h, f ∈ D(Z) ⇒ h ∗ f ∈ D(Z).
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Systèmes causaux

48

La convolution de deux signaux causaux h+, f+ est causale:

(h+ ∗ f+)[n] =
∑
k∈Z

h+[k]f+[n− k] =

⎧⎪⎪⎨
⎪⎪⎩

n∑
k=0

h+[k]f+[n− k], si n ≥ 0

0, sinon.

h+[n] = u[n]an

Notation: h+[n] = u[n] · h[n]

Définition: Un signal discret h[·] est dit causal is h[n] = 0 pour tout n < 0.

De même, le système LID, Sh+ : f �→ h+ ∗ f , est causal
lorsque sa réponse impulsionnelle h+ est causale.

En effet: ∀n ∈ N,
∣∣(h∗f)[n]∣∣ ≤ n∑

k=0

∣∣h[k]∣∣·∣∣f [n−k]
∣∣ ≤ ‖h[0...n]‖�1 ·‖f[0...n]‖�∞ < ∞

Espace vectoriel (non-restreint) des signaux causaux:

D′
+(Z) =

{
f+ ∈ D′(Z) = R

Z : f+[n] = 0, ∀n < 0
}

La convolution de deux signaux causaux est toujours bien définie:

h, f ∈ D′
+(Z) ⇒ h ∗ f ∈ D′

+(Z)
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Exemples de calcul

49

Fonction MatLab correspondante: C = CONV(A,B)
Exemple:
»A=[-1 1];équivalent à 
»B=[0 1 2 3 4]; équivalent à  
»C=CONV(A,B) équivalent à 
C =
     0    -1    -1    -1    -1     4

A[0] = −1, A[1] = −1 et A[n] = 0 sinon

C[n] = (A ∗ B)[n]
B[0] = 0, B[1] = 1...B[4] = 4 et B[n] = 0 sinon

Rappel: suite géometrique avec q �= 1
n∑

k=0

qk =
1− qn+1

1− q

Soit à convoluer an u[n] et bn u[n] où a �= b:

anu[n] ∗ bnu[n] =
∑
k∈Z

aku[k] · bn−ku[n− k]

=

⎧⎨
⎩
∑n

k=0 ak · bn−k, si n � 0

0, si n < 0

= u[n] · bn
n∑

k=0

(a/b)k = u[n] · bn 1− (a/b)n+1

1− (a/b)

= u[n] · bn+1 − an+1

b − a

=
(
( a
a−b )a

n − ( b
a−b )b

n
)

u[n]
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Stabilité des opérateurs LID
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f [n] g[n] = (h ∗ f)[n]

Preuve:

2) Nécessité: On prend f0[−k] = sign
(
h[k]

)
(excitation bornée la plus défavorable)

(h ∗ f0)[0] =
∑
k∈Z

h[k]f0[−k] =
∑
k∈Z

∣∣h[k]∣∣ ≤ C ‖f0‖�∞︸ ︷︷ ︸
1

< ∞ (car BIBO-stable)

Sh

Si Sh est �p-stable, alors f ∈ �p(Z) ⇒ Sh{f} = h ∗ f ∈ �p(Z)

Théorème: Sh est BIBO-stable ⇔ h ∈ �1(Z).

Stabilité BIBO (bounded-input bounded-output) = stabilité au sens �∞

1) Suffisance de h ∈ �1(Z) ⇔ ‖h‖�1 < ∞∣∣(h ∗ f)[n]∣∣ ≤ ∑
k∈Z

∣∣h[k]∣∣ ∣∣f [n− k]
∣∣ ≤

(∑
k∈Z

∣∣h[k]∣∣
)(

sup
m∈Z

∣∣f [m]
∣∣)

⇒ ‖h ∗ f‖�∞ ≤ ‖h‖�1‖f‖�∞

Définition: L’opérateur de convolution Sh : f 	→ h ∗ f avec h ∈ D′(Z) = R
Z est �p-stable

s’il existe une constante 0 < C < ∞ telle que, pour tout f ∈ �p(Z),

‖Sh{f}‖�p = ‖h ∗ f‖�p ≤ C‖f‖�p .
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Convolution: stabilité de composition
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f2[n] = (h1 ∗ f1)[n]
f1[n]

Stabilité de composition = stabilité au sens �1

Preuve:

(h1 ∗ f2)[n] =
(
(h1 ∗ h2) ∗ f1

)
[n]

Sh1
Sh2

2) ‖Sh{f}‖�1 ≤ C‖f‖�1 ⇒ h ∈ �1(Z)

On prend f [·] = δ[·] avec ‖δ[·]‖�1 = 1 et Sh{δ} = h, qui donne ‖h‖�1 < C.

Question: Sh1 et Sh2 BIBO stable ⇒ Sh1∗h2 BIBO stable ?

ou, de façon, équivalente: h1, h2 ∈ �1(Z) ⇒ h1 ∗ h2 ∈ �1(Z) ?

1) h, f ∈ �1(Z) ⇒ h ∗ f ∈ �1(Z)∑
n∈Z

∣∣(h ∗ f)[n]∣∣ ≤ ∑
n∈Z

∑
k∈Z

∣∣h[k]∣∣ ∣∣f [n− k]
∣∣

≤
∑
k∈Z

∑
m∈Z

∣∣h[k]∣∣ ∣∣f [m]
∣∣ (changement de variable)

≤
(∑

k∈Z

∣∣h[k]∣∣
)(∑

m∈Z

∣∣f [m]
∣∣) = ‖h‖�1‖f‖�1

Théorème: Sh : f 	→ h ∗ f avec h ∈ D′(Z) est �1-stable ⇔ h ∈ �1(Z)
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Composition de systèmes LID
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⇔f [n] f [n]Tk{·} g[n] = Tk{f}[n] hk g[n] = (hk ∗ f)[n]

Réponses impulsionnelles: hk[n] = Tk {δ} [n]

Mise en série (associativité)

⇔. . .f [n]
h1

f [n]
hK

g[n] g[n]
h[n] = (h1 ∗ h2 ∗ · · · ∗ hK)[n]

Mise en parallèle (distributivité)

⇔+
+

...
...

a1

f [n] f [n]
g[n]

g[n]

hK

h1

aK

h[n] =

K∑
k=1

akhk[n]
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Algèbre des opérateurs LID
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Exemple de manipulation

Opérateurs de décalage:

S{f}[n] �
= f [n− 1]

Sk{f}[n] = f [n− k]

I = S0 = identité(S− 3I)2 = S2 − 6S + 9I

(mêmes règles que la multiplication des polynômes)

Opérateur LIT: T{·} (les variables d’entrée et de sortie sont des signaux)

Composition: T2 {T1{f}} [n] = T2T1{f}[n]

Commutativité: T2T1{} = T1T2{} ⇔ (h1 ∗ h2)[n] = (h2 ∗ h1)[n]

Distributivité: (a1T1 + a2T2)T{} = (a1T1T+ a2T2T){}
⇔ ((a1h1 + a2h2) ∗ h) [n] = a1(h1 ∗ h)[n] + a2(h2 ∗ h)[n]

Opérateur inverse: T−1 t. q. T−1T{f}[n] = I{f}[n] = f [n]

Itération (mise à la puissance): TT{} = T2{}
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Application: convolution de signaux de support fini
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Exemple: C=CONV([-1,1],[0,1,2,3,4])

NB: S0 = I

Soient h1 et h2 deux réponses impulsionnelles causales de longueur N1 et

N2. Alors,

Sh1
=

N1−1∑
k=0

h1[k]S
k

Sh2
=

N2−1∑
k=0

h2[k]S
k

Sh1∗h2
=

N1+N2−1∑
k=0

(h1 ∗ h2)[k]S
k

(−I + S)(S + 2S2 + 3S3 + 4S4)

= −S− 2S2 − 3S3 − 4S4

+ S2 + 2S3 + 3S4 + 4S5

= 0S0 − 1S− 1S2 − 1S3 − 1S4 + 4S5

= [0,−1,−1,−1,−1, 4]
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Opérateur inverse
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f [n]
(h ∗ f)[n] (g ∗ h ∗ f)[n] = f [n]

Condition d’inversion: (g ∗ h)[n] = δ[n]

Inversion BIBO stable ⇔ h, g ∈ �1(Z)

Une condition nécessaire et suffisante pour l’existence de cet inverse avec g ∈ �1(Z)

est que Hd(ω) =
∑

n∈Z
h[n]e−jωn (la réponse fréquentielle discrète de h) ne s’annule

pas pour ω ∈ [−π, π] (Lemme de Wiener).

Sh S−1
h = Sg

Propriété: Sh est injectif sur �∞(Z) ssi il existe g ∈ �1(Z) tel que

(h ∗ g)[n] = (g ∗ h)[n] = δ[n].

Dans ce cas, Sh admet un inverse de convolution Sg = S−1
h : �∞(Z) → �∞(Z).

L’opérateur de convolution Sh : �∞(R) → �∞(R) est injectif si la condition Sh{f1} =

Sh{f2} pour f1, f2 ∈ �∞(Z) implique que f1 = f2.
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Opérateur inverse: exemples

57

Opérateur h[n] g[n] tel que (g ∗ h)[n] = δ[n]

δ[n− k0]

δ[n]− aδ[n− 1]

δ[n+ k0]

u[n]an ∈ �1(Z) si |a| < 1

Par exemple: (I− aS)−1 =
∑∞

n=0 a
nSn pour |a| ≥ 1.

Sk0

I− aS

ou − [−∞···−1][n]a
n ∈ �1(Z) lorsque |a| > 1.

Dans certain cas, on peut aussi trouver un g /∈ �1(Z) tel que (h ∗ g)[n] = (g ∗ h)[n] =
δ[n], mais l’opérateur inverse correspondant Sg = S−1

h : D(Z) → D′(Z) est à manier

avec prudence.
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Attention aux manipulations douteuses !

58

On vérifie aisément que (u ∗ hdiff)[n] = (hdiff ∗ u)[n] = δ[n].

(u ∗ hdiff) ∗ 1 = (δ ∗ 1) = 1

u ∗ (hdiff ∗ 1) = u ∗ 0 = 0

Comme la convolution est (en principe) associative, peut-on en déduire que 1 = 0 ?

u[·], 1 /∈ �1(Z)

Thdiff
: f �→ f ∗ hdiff avec hdiff = δ[·]− δ[· − 1] n’est pas injectif sur �∞(Z)

car Th{α · p0} = 0 pour tout α ∈ R et p0[n] = 1 ∈ �∞(Z).
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Opérateurs de convolution
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�p(Z) → �p(Z)

Les deux cas extrêmes où la conditions h ∈ �1(Z) est aussi nécessaire:

p = ∞: Stabilité BIBO

p = 1: Stabilité de composition

Inégalité de Young discrète

Théorème
Pour tout f ∈ �p(Z) avec p ≥ 1 et h ∈ �1(Z), on a:

‖h ∗ f‖�p ≤ ‖h‖�1‖f‖�p .

Ceci implique que l’opérateur de convolution f �→ h ∗ f est �p-stable.
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Preuve de l’inégalité de Young discrète

60

On choisit p, p′ ≥ 1 tels que
∣∣h[n]∣∣1 =

∣∣h[n]∣∣1/p ∣∣h[n]∣∣1/p′
et on applique l’inégalité de Hölder:∣∣(h ∗ f)[n]∣∣ ≤ ∑

k∈Z

∣∣h[k]∣∣ ∣∣f [n− k]
∣∣

≤
(∑

k∈Z

∣∣h[k]∣∣ ∣∣f [n− k]
∣∣p)1/p (∑

k∈Z

∣∣h[k]∣∣
)1/p′

︸ ︷︷ ︸
‖h‖1/p′

�1

.

En sommant et élevant à la puissance p, on obtient

∑
n∈Z

∣∣(h ∗ f)[n]∣∣p ≤ ‖h‖p/p′

�1

∑
n∈Z

(∑
k∈Z

∣∣h[n]∣∣ |f [n− k]|p
)

= ‖h‖p/p′

�1

∑
n∈Z

∑
m∈Z

∣∣h[n]∣∣ |f [m]|p (changement de variable)

= ‖h‖p/p′

�1

(∑
n∈Z

∣∣h[n]∣∣
)(∑

m∈Z

|f [m]|p
)

= ‖h‖(p/p′)+1
�1

‖f‖p�p =
(‖h‖�1 · ‖f‖�p)p
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Équivalence LIT/LID

Un système LID est équivalent à un système LIT dont la réponse
impulsionnelle prend la forme d'une somme d'impulsions de Dirac équidistantes:

Lien avec la convolution continue: en utilisant la représentation continue des
signaux discrets

61

f [n] fT (t) =
∑
n

f [n] · δ(t− nT )

g[n]
passage discret→continu−−−−−−−−−−−−−−−→ gT (t) =

∑
n

g[n] · δ(t− nT )

(f ∗ g)[n] (fT ∗ gT )(t) =
∑
n

(f ∗ g)[n] · δ(t− nT )

h(t) =
∑
k∈Z

h[k] · δ(t− kT )
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Table de convolutions discrètes

62

f1[n] f2[n] (f1 ∗ f2)[n]

f [n] δ[n− n0] f [n− n0]

an u[n] u[n]
(

a
a−1a

n − 1
a−1

)
u[n] si a �= 1

an u[n] bn u[n]
(

a
a−ba

n − b
a−bb

n
)
u[n] si a �= b

u[n] u[n] (n+ 1)u[n] = s1+[n]

sN1
+ [n] sN2

+ [n] sN1+N2+1
+ [n]

sN+ [n]an bn u[n] 1
(1−a/b)N+1 · bnu[n]−

N∑
k=0

a/b
(1−a/b)N+1−k · sk+[n]an si a �= b
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Transformée en z: définition

Attention: même notation (majuscule) que pour une transformée de Fourier.
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Soit un signal discret, sa transformée en z se définit formellement par

F (z) =
∑
n∈Z

f [n] z−n

Exception: z = ejω où ω ∈ [−π, π] (cf. Transformée de Fourier Discrète)

Pourquoi une série en z−n et pas en zn ?

Une convention arbitraire peu pratique mais, hélas, universelle. . .

En général, on ne cherche pas à évaluer la transformée en z pour des valeurs spécifiques

de z; on l’utilise pour ses propriétés

algébriques: expression simple des systèmes discrets

de représentation: f [·] (signal discret ) ⇔ F (z) (transformée en z = série formelle)
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Convolution/multiplication
La transformée en z de la convolution discrète de deux signaux est le produit des deux 
transformées en z

(f ∗ g)[n] transformée en z−−−−−−−−−−→ F (z) · G(z)

Preuve: 

Remarque: une multiplication arithmétique est une convolution (avant report des 
dizaines)! 1.3 × 5.6 = ( 1︸︷︷︸

f [0]

·100 + 3︸︷︷︸
f [−1]

·10−1)( 5︸︷︷︸
g[0]

·100 + 6︸︷︷︸
g[−1]

·10−1)

= 1 × 5︸ ︷︷ ︸
(f∗g)[0]

·100 + (1 × 6 + 3 × 5)︸ ︷︷ ︸
(f∗g)[−1]

·10−1 + 3 × 6︸ ︷︷ ︸
(f∗g)[−2]

·10−2
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∑
n∈Z

(f ∗ g)[n] · z−n =
∑
n∈Z

(∑
k∈Z

f [k] · g[n− k]
)
· z−n =

∑
k∈Z

∑
n∈Z

f [k] · g[n− k] · z−n

=
∑
k∈Z

f [k] ·
(∑

n∈Z

g[n− k] · z−n

)
=

∑
k∈Z

f [k] ·
(∑

m∈Z

g[m] · z−m−k
)

=
∑

k
f [k] · z−k ·G(z)

= F (z) ·G(z)
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Échantillonnage
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Preuves: 
∑
n∈Z

(↑ M)f [n]︸ ︷︷ ︸
=f [m] si n=m·M

et 0 sinon

· z−n =
∑
m∈Z

f [m] · z−mM = F (zM )

1
M

M−1∑
m=0

F

(
z1/Mej

2πm
M

)
= 1

M

M−1∑
m=0

∑
n∈Z

f [n]z−n/Me−j 2πmn
M

= 1
M

∑
n∈Z

f [n]z−n/M
M−1∑
m=0

e−j 2πmn
M

︸ ︷︷ ︸
=0 si (n mod M)�=0
=M si (n mod M)=0

=
∑
m∈Z

f [m ·M ]z−m =
∑
m∈Z

(M ↓)f [m] z−m

Soit f [n] un signal discret dont la transformée en z est donnée par F (z) =
∑
k∈Z

f [n]z−n.

(↑ M)f [n]

(M ↓)f [n]
transformée en z−−−−−−−−−→

F (zM )

1
M

M−1∑
m=0

F

(
z1/Mej

2πm
M

)
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Zone de convergence (ROC) et inversion
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Rappel: F (z)
�
=

∑
n∈Z

f [n] z−n

Lien avec la transformée de Fourier en temps discret (voir Chap. 10)

Inversion par intégration complexe (si F (z) est analytique sur Γ)

f [n] =
1

j2π

∮
Γ

F (z)zn−1dz où Γ est un contour fermé inclu dans ROC

ROC ("region of convergence") = zone de convergence

ROC = {z ∈ C :

∣∣∣∣∣∑
n∈Z

f [n]z−n

∣∣∣∣∣ < ∞}

Cas particulier où ROC inclu le circle unité: {z = ejω : ω ∈ [−π, π]}
f [n] =

1

2π

∫ π

−π

F (ejω)ejωndω
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Propriétés de la transformée en z
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Opération Signal discret Transformée en z

Définition f [n] F (z)
�
=

∑
n∈Z

f [n]z−n

Linéarité α · f [n] + g[n] α · F (z) +G(z), ∀α ∈ C

Décalage f [n− n0] z−n0F (z)

Retournement f [−n] F (1/z)

Sur-échantillonnage (↑ M)f [n] F (zM )

Sous-échantillonnage (M ↓)f [n] 1
M

M−1∑
k=0

F

(
z1/Mej

2πk
M

)

Multiplication par an an · f [n] F (z/a)

Multiplication par n n · f [n] −z d
dzF (z)

Convolution (f1 ∗ f2)[n] F1(z) · F2(z)
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Complément: Rayon de convergence

•
zone de convergence

ρ+

z ∈ C
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Définition: f [n] est à support semi-fini ssi il existe n0 tel que

soit f [n] = 0 pour tout n < n0 (support semi-fini positif)

soit f [n] = 0 pour tout n > n0 (support semi-fini négatif)

Si f [n] est à support semi-fini positif, alors F (z) devient une série entière en z−1

dont le domaine de convergence est donné par

Rappel: lim sup
n→+∞

un = lim
n→+∞

(
sup
k≥n

uk

)

Pour les signaux à support semi-fini, la zone de convergence de la transformée en z

(ROC) peut être spécifiée de façon précise. Le critère déterminant est le comporte-

ment de f [n] pour n → ±∞.

ROC = {z ∈ C : |z| > ρ+} où ρ+ = lim sup
n→+∞

|f [n]|1/n
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ρ−
•

zon
e d

e

con
ver

gen
ce

•
ρ+ρ−

zone de
convergence

z ∈ C

z ∈ C
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Et dans le cas où

lim sup
n→+∞

|f [n]|1/n︸ ︷︷ ︸
ρ+

<

(
lim sup
n→+∞

|f [−n]|1/n︸ ︷︷ ︸
ρ−

)−1

Si f [n] est à support semi-fini négatif, alors F (z) =
∑

n f [−n]zn devient une série

entière en z dont le domaine de convergence est donné par

F (z) est convergente dans la couronne

ROC = {z ∈ C : ρ+ < |z| < ρ−}

ROC = {z ∈ C : |z| < ρ−} où ρ− =
1

lim sup
n→+∞

|f [−n]|1/n
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Exemples
.

.
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.

f [n] = δ[n− n0] correspondant, au choix,

à l’impulsion discrète localisée en n0

au système LID Sn0 (décalage de n0 échantillons)

est à support fini, d’où ρ+ = 0. On a donc F (z) = z−n0 avec ROC = C\{0}.

f [n] = anu[n] est à support semi-infini positif et ρ+ = |a|. On a donc

F (z) =
∑
n∈Z

anu[n] · z−n

=
∑

n≥0

(
az−1

)n
=

1

1− az−1
avec ROC = {z ∈ C : |z| > |a|}

f [n] = a|n| est à support infini. On calcule ρ+ = |a| et ρ− = |a|−1. Donc, si l’on a |a| < 1

(le vérifier!)

F (z) =
1− a2

(1− az)(1− az−1)
avec ROC = {z ∈ C : |a| < |z| < |a|−1}
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Lien avec les séries de Taylor

Rappel: une fonction est analytique dans un domaine du plan complexe si sa 
série de Taylor converge uniformément dans tout ce domaine.
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De même, soit f [n] à support semi-fini négatif (n ≤ n0). Si ρ− n’est pas nul, alors

zn0F (z) est une fonction analytique dans le disque |z| < ρ−. Les f [n] sont donc

donnés par le développement de Taylor de zn0F (z) autour de z = 0:

f [n0 − n] =
1

n!
· dn

dzn

(
zn0F (z)

)∣∣∣∣
z=0

Soit f [n] à support semi-fini positif (n ≥ n0). Si ρ+ n’est pas infini, alors P (z) =

z−n0F (z−1) est une fonction analytique dans le disque |z| < ρ−1
+ . Les f [n] sont donc

donnés par le développement de Taylor de P (z) autour de z = 0:

f [n+ n0] =
1

n!
· dn

dzn

(
P (z)

)∣∣∣∣
z=0
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Inversibilité
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La solution est cependant unique dans chaque couronne où H(z) est analytique.

Remarque: Quand on sait par avance que f [·] est à support semi-fini, il est plus simple

d’utiliser la méthode de la série de Taylor.

Étant donné F (z), comment retrouver les coefficients f [n]? Ce problème peut avoir

plusieurs solutions s’il existe des lieux dans C où F (z) n’est pas analytique.

u[n]
Transformée en z−−−−−−−−−→

∑
n≥0

z−n =
1

1− z−1
pour |z| > 1

−u[−n− 1]
Transformée en z−−−−−−−−−→ −

∑
n≤−1

z−n = − z

1− z
=

1

1− z−1
pour |z| < 1

Inverser la transformée en z revient donc à

1. Identifier la ou les couronnes {z ∈ C : ρ1 < |z| < ρ2} où F (z) est analytique

(souvent, il suffit d’identifier les pôles de F (z)).

2. Dans chacune de ces couronnes, utiliser la formule f [n] = 1
j2π

∮
Γ
zn−1F (z)dz

où Γ est un contour fermé contenu dans la couronne (p. ex. un cercle).
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Table de transformées en z
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f [n] F (z) ROC = zone de convergence

δ[n− n0] z−n0 C\{0} si n0 > 0, ou C si n0 ≤ 0

u[n] 1
1−z−1 {z ∈ C : |z| > 1}

sN+ [n] 1
(1−z−1)N+1 {z ∈ C : |z| > 1}

an u[n] 1
1−az−1 {z ∈ C : |z| > |a|}

−anu[−n− 1] 1
1−az−1 {z ∈ C : |z| < |a|}

ansN+ [n] 1
(1−az−1)N+1 {z ∈ C : |z| > |a|}

(−1)N+1ansN+ [−n−N − 1] 1
(1−az−1)N+1 {z ∈ C : |z| < |a|}

1
nu[n− 1] − log(1− z−1) {z ∈ C : |z| > 1}


