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8.1 DISCRET/CONTINU

= Analogie vecteurs/signaux

= Origine des signaux discrets

= Représentation continue d’un signal discret

= Interpolation

Analogie vecteurs/signaux

8-5

m Vecteur dans RY
Notation: f = (fl; fo, oo, fN) e RN
Structure d’espace vectoriel:
Va,BER, f.gecRY = aof+pBgcRY

N

Produit scalaire: (f,g) = Z fngn I
n=1

10

m Signal discret = élement d’'un espace fonctionnel discret

Signal = séquence de nombres réels: vecteur de dimension infinie (mais dénombrable).

Notations: (f[n]), ., ou f[] ou feV(Z) ou,simplement,

V/(Z) : Espace fonctionnel & définir (p. ex. R%, {5(Z) ou lo(Z))
Va,B R, f,geV(Z) = af+PgeV(Z)

+oo
Produit scalaire discret: (f,g) = Z flnlgln]

n—=——oo
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fln]
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Définitions

Un signal discret est un signal a temps discret. Mathématiquement, c’est une fonction
f de la variable entiére n (ou une séquence bi-infinie a valeurs réelles)

Notation:  f z : f{ | SZ fln]
n n ’
. L] :
f[] S RZ _0.21 l l i

RZ est 'ensemble de toutes les séquences (f[n))nez, fIn] € R.

Noter la différence avec un signal a temps continu qui est une fonction de la variable
réelle

f R—-R 1
t s £(1) °° S

0.6
0.4

0.2

-0.2

-0.4
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Et avant d’aller plus loin...

= Un des succes les plus importants du discret /
numérique

La compression de données
codage audio mp3

codage image jpg, j2k

codage video mpeg2, mpeg4, h.264
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mp3 schématique
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Codage <= Quantification
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La compression d’images fonctionne
de la méme maniere

La compression d’images fonctionne
de la méme maniere




Origine des signaux discrets

Un signal discret est souvent le résultat de I’échantillonnage uniforme d’un signal

continu
F(b) échantillonneur fln] = f(nT)
(fréquence 1/T)

Il existe aussi des signaux qui sont naturellement discrets (et souvent
quantifiés):

» phénoménes quantiques (p.ex. comptage de photons)
* événements ponctuels (p.ex. nombre d’abstentionnistes lors d’élections)
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Représentation continue d’un signal discret

Un signal discret f[n] peut se représenter de maniére équivalente a I'aide d’un signal
continu fr(t)

fr(t) =Y fln] - 6(t — nT)

nez

Dans le cas d’un signal discret obtenu par échantillonnage, le lien est la
multiplication par le peigne de Dirac a la fréquence 1/T

f(t) fr(t)

Z(S(t—nT)

NneEZL
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Interpolation

A Taide de la représentation continue fr(t) du signal échantillonné f[n], on peut
exprimer la version interpolée de ce signal en utilisant une fonction d’interpolation
©(t) (sinc(t), rect(t), tri(t), par exemple)

finterpolée (t) = fT (t) * @(t/T)

fr(t)
f(t) p(t/T)—
plus proche voisin Shannon
1t 1
0.8 @(t) = rect(r) Z d(t —nT) 0.8 @(t) = sinc(1)
0.6r nez linéaire 06
0.4r 0.4
0.2} 1 0.2
0 = 08 @(t) = tri(¢) 0 A
Al 1 A7 [
-0.4k 0.4 -0.4
4 -2 0 2 4 6 8 -2 0 2 4 6 8
0.2
0 A
o7 N4
-0.4 . . . . . .
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= L’impulsion discréte d[n]

= Le saut unité discret u[n]

= Sighaux binaires et rectangulaires

= La fonction polynéme causal discret s [n]
= ’exponentielle causale discréete

= Signaux périodiques

= Représentation canonique des signaux discrets



L’'impulsion discréte 6[r] (ou de Kronecker)

1}
0.8 8[n]
1, sin=0 0.61
d[n] = . o
0, sinon '
0.2t
0

Cette fonction est identique a la suite ¢,, de Kronecker.

‘C 5 d[n] n’est pas une version échantillonnée de la distribution de Dirac d(?)
7
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Le saut unité discret u[n]

| ln]
0.8
1, sin>0 0.6
uln) = ¢
, Slnon 0.4
0.2}
0

C’est une version échantillonnée de la fonction saut unité continue
uln] = u((n + %)T)
Remarque: u[n] — uln — 1] = §[n]
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Signaux binaires et rectangulaires

m Fonction indicatrice

Soit un ensemble E d’indices discrets. On définit
1 sin€elkE
Ign| =
E[ ] { 0 sinon.

E=1{0,1,2,3,4} = [0...4]

m Signhaux rectangulaires

E = {ni,...,na} avec ny < ng € Z est un interval discret denoté par [n; ... ns]
1 sing <n<ng
1.  o1n| =
na-na) 1) { 0 sinon.
m Cas particuliers
= Saut indiciel: UH = ]1[0_“00)['] = ]1220[']

= Impulsion de Kroneker en n = ng:  0[- — ng] = Lp,y[]

Unser-Vandergheynst / Sig & Sys Il
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L’exponentielle causale discrete

1t
0.8}
. 0.6}

" a”, sin>0
a” u[n] = . o4l

0, sinon

0.2}
0

Version échantillonnée de la fonction exponentielle causale

a"uln] = u(t) exp (% log a>

t=nT
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La fonction polynéme causal discret s [n]

Pour N > 1 on définit

40}
Nro1 ("+1)(”+]\2,!)"'(”+N), sin>0 a0l s’[n]
sy [n] = _
0, sinon
20}
10 { {
etsi N = 0, on pose s [n] = u[n] 0 ! I

) ,
-2 0 2 4 6 8

Remarque: s¥ [n] — s¥[n—1] = sf_l[n].

n+ N
Par ailleurs, il faut noter que s%[n] :< 4?; )u[n].
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Signaux périodiques

Un signal discret f[n| est périodique si et seulement si, pout n € Z, il existe un
nombre entier N tel que

fln+ N = fln]

&:3 Un signal périodique continu échantillonné n’est pas nécessairement périodique.
Yyiq

fn] = cos(mn/2 +0.1) fn] = cos(3n/2 +0.1)
i ¢ 3 i ¢ 7
© &
0.5 : - 0.5 .
O O
0 r @ ¢ | r | o N | ]
! L) ! l N l

0.5 - 0.5

1 ol S

2 0 2 4 6 8 2 0 2 4 6 8
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Représentation canonique des signaux discrets

Tout signal discret peut s’exprimer comme une combinaison linéaire d’impulsions dis-

crétes décalées 6[- — ng)

+oo
finl= 3" flnol - dln = no)

ng=—00

0.6
0.4

0.2

of  f1-118[ + 1]

0.6
0.4

0.2

e fl0]8[]
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8.3 QUELQUES OPERATEURS

ou
1t
0.8t f[]
0.6
0.4
0.2r
: [
0 1 >
08 f[].](S[ - 1]
+ .

= Décalage

= Echantillonnage

= Transformations ponctuelles

= Quantification

0.8]

0.6

0.4

fll =) fnlsl- -]

f18Jo[- =3
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Opeérateur de décalage S = “Shift”

fin] = S{f}n] = fln —1] Forme concise: Sf = f[- — 1]

m Propriétés
= Linéarité:
S{afi[] + f2[1}[n] = aS{f1}[n] + S{f2}[n] pour tout a € R
= Itérations: S*{f}[n] = fn — K]
= Identité: S° =1

= Structure de semi-groupe:  S¥1SF2 = SF1+k2 pour tout ky, ke € Z

m Combinaison linéaires of K décalages

Exemple: Opérateur de différences

I=8)f = fL]=fI—1]

Poids: w = (wo,...,wK_l) € RX (wo,wy) = (1,—1)

Sw{f} = 2_: wSH{f} = Z_ wi f[- — K]
k=0 k=0

Unser-Vandergheynst / Sig & Sys Il 8-25

Echantillonnage

» Sous-échantillonnage: f[n|+— (M |)f[n] = f[Mn]

_ fln], sim = Mn
« Sur-échantillonnage: f[n] — (T M)f[m] = { ,
0, sinon

1

(21)f =1+ 0 0] 0 f[1] 0---

0.6
0.4

T . . ' T ' ] 02 T T .
B 9 T Sf=-- fl=1] fl0] fI1]---
gl =1.. f[()] f[l] f[2] s ] / .0.2l l l

0.4 1

f
0.6 1 0.8
0.4f ‘ - o { {
T g
i 1 .
_0_2_1 1 l l _\0_8 R R S S

VA @Uf=--t fI0] f12) 14
Tt

-0.2) J J o

A\
=]
N
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Transformations ponctuelles :
Soit 7' : R — R une fonction réelle donnée. ! /

m Non-linéarité ponctuelle T'(f)

fln] = T(f[n]) 2y s

Principe: chaque échantillon du signal subit la méme transformation scalaire T.

m Cas particuliers

= Seuillage (binarisation): 0s
1, sif > (seuil) 08
f H H 0.4
0, sinon
0.2
= Sigmoide: f — m o B
-1 (1] 1 2 3
= Rectified linear unit (pour réseau de neurones): f:
f = ReLU(f;8) = (f — B)+, B € R (biais)
0.5
0.0 /j
055 0 1 2 3
Unser-Vandergheynst / Sig & Sys Il 8-27

Application: CNN (convolutional neural networks)

m Module de convolution: poids w;, partagés au travers d’une fenétre glissante

Tconv{f} = Zwksk{f} = Zwkf[ - k]
k=0 k=0

£y caetEol 1 g
£ 560000000Y
£

m Fonction d’activation d’'un neurone: ReLU ou sigmoide

m Structure pyramidale: U-net (par re-échantilonnage)

Skip connection

1 64 64 64 « # of channels 12864 64 1 H

U-net

spatial dimension :512x512

2

128128 256128 128
I | 256 x 256
128 256 512 256 256) > 3x3conv.+BN
Iil . I ic +RelU
128x128 + 2x2max pooling
+ + skip connection
256° 512 512 1024 1 12 i
and concatenation
64x64 .'-’- &'ﬁ 'i * 3x3up-conv2.

5124 1024 1024 +BN + RelU
Unser-Vandergheynst / Sig & Sys Il 32x32\ W= f== + 1x1conv. 8-28



8.4 ESPACES VECTORIELS DE SIGNAUX

= Espaces des signaux a énergie finie
= Espaces vectoriels discrets /,(Z)
= Produit scalaire étendu

= Exemples

8-29

Structure mathématique sous-jacente

Les signaux discrets sont mathématiquement plus simples que les signaux
continus:

Y Il n’y a pas de notion de “presque partout”
v Un signal n’a pas de valeurs infinies fln] # o0, Yne€Z

Y Il n’y a pas de notion de continuité, dérivabilité, etc...

v On peut avoir une bonne approximation d’un signal discret d’énergie finie a
I'aide d’'un nombre fini de ses valeurs

Donc, on peut développer une théorie qui est plus directement accessible
aux étudiants ingénieurs que la théorie des distributions, établie de Laurent Schwartz.

Unser-Vandergheynst / Sig & Sys Il 8-30



Espaces des signaux a énergie finie

m Espace des signaux discrets a énergie finie

0(Z)={f:Z—C:|fl2, £ X,z fln]]> < oo}

m /5(7Z) est un espace de Hilbert équipé avec le produit scalaire discret

nez
Exemples:

= a"uln] € ¢5(Z) pour |a| < 1 (exponentielle causale décroissante)

= {6]- — m]}mez est une base orthonormale de ¢2(7Z)

m Inégalité de Cauchy-Schwarz

(s 9)eal <N fllexllglle,  pourtout  f,g € £2(Z)

Unser-Vandergheynst / Sig & Sys Il 8-31

Normes discretes non-Euclidiennes

m Normes-/, pour p € [1, o0

Il 2 (wa) | sipe[Lo)

nez

sup,,¢z | flnl], Si p = +oo0.

m Propriétés caractéristiques d’'une norme

= Non-négativité: || f{|,, > 0 avec || f|l,, =0 f =0

= Homogenéité: || - f|l, = || - || f]l¢, pourtouta € C

= Inégalité triangulaire: || f + gll¢, < || flle, + llglle,

m Propriété de hiérarchisation
1 fllew <1 flleg < N1flle, < N1 llex

pour tout signal f[-]et1 <p < ¢ < .

Unser-Vandergheynst / Sig & Sys Il 8-32



Espaces vectoriels discrets

m Espaces de signaux discrets ¢,(Z) pour p > 1
(Z)={f:Z—R:|flle, < oo}
Ce sont des espaces de Banach (c-a-d. des espaces normés complets)

Cas particuliers
= p=2: [ly(Z) est'espace des signaux discrets a énergie finie
= p=1: /(1(Z) estI'espace des signaux discrets sommables (en valeur absolue)
12

= p=o00: {-(Z) estl'espace des signaux discrets bornés

m Propriétés d’imbrication (embeddings)

((Z) C 0,(Z) C 44(Z) C loo(2)

pour 1 <p < g < oc.

Unser-Vandergheynst / Sig & Sys Il 8-33

Produit scalaire étendu

1 1
Definition: Les indices p, p’ € [1, o] forment une paire conjuguée si — + — = 1.
b D
Par exemple: (p, p’) = (1,00),(2,2), (c0,1)
m Extension du produit scalaire = produit de dualité
Pour f € ¢,,(Z) et g € £,y (Z) ou p,p’ sont des indices conjugués, on définit:

(f,9) £ flnlgln]

nez
Propriété: Lapplication (f, g) — (f, g) est une forme bilinéaire
et continue /,(Z) x ¢,,(Z) — R.

m Inégalité de Hdblder

Pour tout f € ¢,(Z) et g € £,y (Z) ou p,p’ sont des indices conjugués, on a:

(£, )] < 11flle, llglle,

Généralization de l'inégalité de Cauchy-Schwarz (p = p’ = 2).

Unser-Vandergheynst / Sig & Sys Il 8-34



Signaux a support fini

m Troncation temporelle/restriction d’un signal

Soit un ensemble E d’indices discrets temporaux. On définit

faln] = fln] - 1x[n] :{ flnl, sinek

0, sinon
m Support d’'un signal

F = support(f) = {n : f[n] # 0} (ensemble des indices actifs)

Longueur ou taille du signal: max(F) — min(F) + 1
Le support est dit fini (ou compact) si sa longueur est finie.
fn]
Support(f) ={2,3,4,5,7,8,10}
-1 0 1 2 3 10 n

< >
longueur = 10-2+1=9

Unser-Vandergheynst / Sig & Sys Il 8-35

Signaux bornés vs. non-restreints

Definition: Le signal discret f est dit
e borné & sup,;|f[n]| <o & feln(Z)
e a support fini ssi il existe ng < ny € Ztel que fin,. ny)[] = f[] € loo(Z).
e localement sommable/borné si f;_n . n[-] € ¢1(Z) C {o(Z) pour tout N € N.

Les espaces vectoriels correspondant sont dénotés par /. (Z), D(Z), D'(Z) = RZ.

m Propriétés d’inclusion (pour1 < p < g < )

D(Z) C -+ C 6(Z) Cly(Z) C ,(Z) C Leo(Z) C --- C DI(Z) il
ABAL

NB: Les distinctions sont dues exclusivement au comportement a Iinfini. ¥ &

Soit f € D'(Z) et g € D(Z) avec G = support(g) fini. Alors,

[ < D 1Sl lgln]] < I fellesllgllen, < o

neG
Unser-Vandergheynst / Sig & Sys I 8-36



Complément: Topologie de D(Z) et D'(7Z)

[£: domaine de longueur finie (compact)

m D(Z): 'espace des signaux “test” a support fini

w e € D(Z) < e|] € l(Z) etil existe E compact tel que e[n] = 0,Vn ¢ E.

= Une séquence de signaux (e;);cn converge vers e dans D(Z)
< il existe E compact tel que support(e;) C E et lim;_,~ ||e — €;]|,., = 0.

m D'(Z): 'espace non-restreint de signaux

« f €D (Z)=RE

=

| f[n]| < oo pour w'importe quel n € Z (fini).

= Une séquence de signaux ( f;);en converge vers f dans D’(Z)
< lim; oo (fi,e) = (f,e) pour tout e € D(Z).

Soit f € D'(Z) et e € D(Z) avec support(e) C E compact. Alors,

Unser-Vandergheynst / Sig & Sys Il

Exemples de catégorisation

nek

m Signaux a support fini: f[-] € D(Z)

N—1—|—no

fnll= Y. flnlél—n]

n=no

m Signaux bornés: f[] € (- (Z)

= Exponentielle causale avec |a| < 1:  a” u[n]

[(foe)| < D 1]l felnl] < Il fellellelle. < oo

€l (Z) - EQ(Z)

= (Co-)sinusoides discrétes avec wg € R: n+— Acos(won) ¢ (1(Z)

8-37

m Signaux non-restreints: f[-] ¢ (. (Z)
= Exponentielles bilatérales: n — a™ avec a # 0

= Polynémes discrets: s -] avec N > 1.

fln] g[n] (f.9) = Z flnlg[n]
nez
a” —ad[n + 1] + 8[n] —a-at+1=0 D'(Z) x D(7Z)
) (3)" | il ()" S =T | @6
(=1)" non-défini! loo(Z) x L (Z)

Vn,po[n] =1 € U (Z)

Unser-Vandergheynst / Sig & Sys Il
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8.5 SYSTEMES LINEAIRES DISCRETS

= Analogie matrice/systeme linéaire
= Définition et représentation

= Systémes LID

= Convolution discréte

= Stabilité des opérateurs LID

= Algebre des opérateurs LID

= Exemple de calcul

= Table de convolutions discrétes

8-39
Analogie matrice/systeme linéaire
m Transformation linéaire: RY — R¥
al Sytéme linéaire en temps discret:
y:H'X <~ ymzzhm,nxn
n=1 y[nl] - Z H[m~ TL] [L’[’n]
ne”L
= Entrée: x = (1,22,...,2N)
= Sortie: 'y = (y1,¥2,---,YN) Syteme linéaire
= Matrice H: [H]n = hipn, mne{l,..., N} X y
—_— H —
€n hn =H- €en

m Identification du systéme matriciel
= But: déterminer les éléments de la matrice H = [h; - -- hy]
= Méthode: série d’excitations élémentaires {e,, },=1.. ~

= Propriété de la base canonique: vx € RY, (x,e,,) = z,,

Contrepartie en temps discret: impulsions de Kronecker n — d[n — no]
(f,d] —ng)) Z fIn] d[n — no] = fno]
nez

Unser-Vandergheynst / Sig & Sys Il 8-40



Définition et représentation

Les systémes linéaires discrets sont des opérateurs linéaires qui agissent sur les
signaux discrets:

Rappel: linéarite <  T{aif1 +asfe} = a1 T{f1} +a2T{f2} pourtouta;,as € R (ou C)

Exemples

* Les opérateurs de décalage et d’échantillonnage sont linéaires
* Les opérateurs de quantification ne sont pas linéaires

Représentation: Un systéme linéaire discret T est entierement décrit par la donnée
d’une fonction de deux variables entieres H|[n, k| telle que

T{f}n] = > _ Hin, k] f[K]

kEZ
Preuve

1. Représentation canonique: f[-] = >, o, fIk]0[- — k]

2. Linéarit¢ de T: T{f}[n] = >, 5 fIK] T{d[- — k] }[n]
—_——

Hin,k]

Unser-Vandergheynst / Sig & Sys Il 8-41

Systemes linéaires invariant par décalage (LID)

Les systemes LID sont des systémes linéaires discrets qui sont en outre
invariants par décalage

T{S*f} = S*T{f} pourtoutk € Z
Ainsi, un systeme est LID si et seulement si il est linéaire et
Hln,m] = T{é[- — m]}[n]
= T{é}[n —m]
= H[n —m,0] = h[n — m]

c’est-a-dire, si et seulement s'il existe une réponse impulsionnelle discréte telle que

T{f}[n] = > hln —m]f[m]

meZ

Exemples

= S est LID, de réponse impulsionnelle h[n] = d[n — 1]
= (M 1) et (M ])nesontpas LID

Remarque: il y a équivalence formelle entre signal et systéme LID.

Unser-Vandergheynst / Sig & Sys Il 8-42



Convolution discrete

Soit f[] et g[-] deux signaux discrets. Alors, leur convolution discréte est donnée par

=" flk] - gln— K] = (f,gln—])

keZ

=Y fln—m]-g[m]

meZ
(par changement de variable m = n — k)
La convolution est une opération
o commutative: (f*g)[n] = (gx* f)[n]
« associative:  (f x(gxh))[n] = ((f*g)*h)[n] sih €lo(Z) et f,g€l1(Z)
» distributive par rapport a I'addition:

(f * (g +h)[n] = (f *g)[n] + (f x h)[n]
L'impulsion discréte est I'élément neutre de la convolution discréte:

(6% g)n] =) 8[K] - g[n — k] = (6], gln — ) = gln]

keZ

Unser-Vandergheynst / Sig & Sys Il 8-43

Convolution: décomposition en étape
m Impulsion unitaire a 'origine

[n] —— g™ —— Aln)

m Impulsion unitaire a kg

8[n — ko] —— YR —— hln — ko]

m Echantillon en kq de valeur f[ko]

flko] - 8[n — ko] ——— YN ——— flko] - hln — ko]

m Signal = somme d’échantillons

Z f[ko (5[71 N ko] Opérateur | Z f ko n B ko]

ko EZ LID koE€EZ

= (f*h)[n] = (h* f)ln]

Unser-Vandergheynst / Sig & Sys Il 8-44



Exemple

Soit a calculer la convolution discréte de

(
0.2, pourn=-1
1, pourn =20
—0.2, pourn =20
fln] = < et gln]=14 2, pourn=1
0.1, pourn =2

0, sinon
. 0, sinon
0.1 0 —0.2, 0.2
« 9 1 } ranger fn] et g[n]

dans l'ordre des n décroissants

1x01 1x0 1x-02, 1x0.2 effectuer les calculs comme
+ 2x01 2x0 2x-02 2x0.2 dans l'algorithme de multiplication

0.2 0.1 —0.4 0.2, 0.2 = (f * g)[n]

indique la séparation entre les indices
n < 0 (a gauche) et n < 0 (négatif a droite)
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Quand la convolution est-elle bien posée?

Cadre non-restreint:
La convolution (h * f)[n] nest pas forcément bien définie pour tout h, f € D’(Z) = RZ.

Par contre, si I'on tronque la réponse impulsionnelle A[-] a l'interval [-N ... N], on a:

[(hieny * )] <D |RlE]| - | fln - K]

N
< k;N iR max ]

= |lh=n. N lles - | fin=n. e < 00

pourtout f € D'(Z) et N € Netn € Z.

De fagon similaire, si h € D'(Z) et f € D(Z) avec support(f) C[-N...N],ona
N
[(hx )l < Y max|f{ml] [hln = K| = 1hg-n.snlles - 1l

me
k=—N

qui montre que h x f € D'(Z).
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Systemes a réponse impulsionnelle finie (RIF)

Soit le systéeme LID spécifié par 'opérateur de convolution discret Sy, : f — h * f.

= Le systéme est a réponse impulsionnelle finie ssi support(h) est fini;
c.-a-d. s'il existe ny < ng € Ztels que h[n] = 0,Vn & [ni...ns.

hin]

m Propriété

= La convolution de deux signaux de support fini est a support fini:
h,f € D(Z) = hx f € D(Z).

Soient hq[-], ho[-] de longueur respective N et No. Alors (hy * hs)[] est a support fini
de longueur au plus (N7 + No — 1) avec ||hy * halle. < ||h1lle, - [|h2lle. < 0.

Normes équivalentes: ||h;||s.. = ma%;]hz-[nﬂ < |lhille, < Nillhille.,, i=1,2
ne
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Systemes causaux Notation:  fi.[n] = u[n] - h[n]

Définition: Un signal discret h[-] est dit causal is h[n] = 0 pour tout n < 0.
De méme, le systeme LID, S;,_ : f — hy * f, est causal
lorsque sa réponse impulsionnelle i est causale.

s Espace vectoriel (non-restreint) des signaux causaux:

D\ (Z)={f+ €D'(Z)=R": fi[n] =0,Vn < 0}

= La convolution de deux signaux causaux h., f1 est causale:

hylklfyin—Fk], sin>0
(hy* f1)In] = Y hy[Klfs[n— k] = ,; e

keZ 0, sinon.

= La convolution de deux signaux causaux est toujours bien définie:

h,feD\ (Z) = hxfecD (Z)

Enefet: VneN, |[(hxf)[n]] <> |h[k]||fln—k]| < llho...nlles [l fio...u len < 00
k=0
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Exemples de calcul

Soit & I " b™ ) b:
oit & convoluer a™ u[n] et b uln} ol a # Rappel: suite géometrique avec ¢ # 1
n n n— 1 1 - TL+1
au[n]*bu[n]:Zau b Fuln — K] k_ q
kez Z ¢ 1—g¢q
_ ZZ:O ak - vk sin>0
0, sin<0
. 1— (a/b)"*
=ufn] - b" > (a/b)* = uln] - bn%
k=0
bn—i—l _ an+1
= uln] .
— ((G)a" = (z2)0") ul
Fonction MatLab correspondante: C = CONV(A,B)
Exemple:
»A=[-1 1];équivalenta Al0] = =1, A[1] = —1 et A[n] = 0 sinon
»B=[0 1 2 3 4]; équivalenta B|0] = 0, B|1] = 1...B[|4] = 4 et B|n| = 0 sinon
»C=CONV (A, B) équivalent a Cln| = (A x B)[n]
C =
0 -1 -1 -1 -1 4
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Stabilité des opérateurs LID

fln) ——|  Sn f—— gl =(hxf)n]

Définition: Lopérateur de convolution Sy, : f + h x f avec h € D'(Z) = RZ est /,-stable
s'il existe une constante 0 < C' < oo telle que, pour tout f € £, (Z),

1Sn{f}le, = A * flle, < Cllflle, -

Si Sy, est {,,-stable, alors f € (,(Z) = Sp{f} =hx f € {,(Z)

Stabilité BIBO (bounded-input bounded-output) = stabilité au sens /.
Théoreme: S; estBIBO-stable < h € /1(Z).

Preuve: 1) Suffisance de h € £1(Z) < ||hll¢, < o0

o Pinl] < 3 B 710 - ] < (zmw) (s 1o
kEZ kez meZ

=[x Fllewe < Nalles [l fllen

2) Nécessité: On prend fo[—k] = sign(h[k]) (excitation bornée la plus défavorable)
(hox f0)[0] = hlk] fol—k] = |n[k]| < C||folle.. < oo (car BIBO-stable)
kez keZ —
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Convolution: stabilité de composition

f2[n] = (h1 = f1)[n] (hy * f2)[n] = ((hl * ho) * fl)[ﬂ]

filn] —— Sh1 > Sh2

\4

>

Question: Sy, et Sy, BIBO stable = S;,, ., BIBO stable ?
ou, de fagon, équivalente:  hi,hy € (1(Z) = hyxhy € l1(Z)?

Stabilité de composition = stabilité au sens /;

Théoréeme: S; : f+— hx favech € D'(Z) est {1-stable < h € (1(Z)

Preuve: Wh,feli(Z) = hxfel(Z)
Yo lhx Nl <D0 |nk]] | fin - K]
nez neZ keZ
< Z Z |h[K]| | £lm]| (changement de variable)
kEZ mEeZ
< <Z ’h[kH) (Z !f[m]!> = [|Alleu [ f1le,
keZ meZ

2) IS{fHlex < Cllflley = heba(Z)
Onprend f[:] = d[] avec [|d[]|l¢, = 1 et Sp{d} = h, qui donne [|Al,, < C.
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1
1 1t [} 0
support 0.8 \B
a\ > ea
cav® g &0
| —|n[/5
0.4 e
el sttt e
_ support C [0,+0[ 1 J,HJ 02 H H“
D 0 IITTTT?TQ! ........
0.5 5 35 55 05 - - 55 ) 10 20
1 (®)
s ‘o\ea\a
s ¢ g W@
0.5 Qa 9"‘ 1
CT‘l ll I lf”T..“‘ ‘ 1+ |n|
}\ ‘[IIIITITTTTTTTTTTTT????Y?
05 0 10 20 ; 10 20
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Composition de systemes LID

fln]— hx — gln] = (b * f)[n]

fln] — Tid -} — gln] = Te{f}n] &
Réponses impulsionnelles: hy[n] = Tk {6} [n]
m Mise en série (associativité)
n n n
f[n]_’ hi — —~ — hg —g[> | RN f[i» hin] = (hy * hg * - - - % hi )[n] _g>[ |
m Mise en parallele (distributivité)
ai
—é_' h1
K
_ n
N ; : gl = fln] — hln] = Zakhk[n] - g[n]
aK k=1
—é—' hi
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Algebre des opérateurs LID

m Opérateur LIT: T{-} (les variables d’entrée et de sortie sont des signaux)

m Composition: To {T1{f}} [n] = ToT1{f}n]

m Commutativité: Tng{} = Tng{} ~ (hl * h2)[7’b] = (h2 * hl)[n]

m Distributivité: (a1T1 + a2T2)T{} = (alTlT -+ CLQTQT){}
< ((a1hy + ashs) x h) [n] = a1 (hy * h)[n] + az(hs * h)[n]

m Opérateurinverse: T~ t.q. T-IT{f}[n] =I{f}n] = f[n]

m [tération (mise & la puissance): T T{} = T?{}

Exemple de manipulation
(S—3I)2 =82 -6S+9I

S{f}n] = fln — 1]
S*{f}n] = fln — k]

I = S° = identité

Opérateurs de décalage:

(mémes reégles que la multiplication des polynémes)
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Application: convolution de signaux de support fini

Soient hy et hy deux réponses impulsionnelles causales de longueur N; et
Ns. Alors,

N;—1

Sh, = Z ha k]S NB: S0=1
k=0
No—1

Sh, = Y halk]S*
k=0
Ni1+Ns—1

Shl*hz = Z (hl * hQ)[k]Sk
k=0
Exemple: c=conv([-1,11,[0,1,2,3,4]1) =10,—-1,—1,—1,—1,4]

(=T +9)(S +2S? + 3S% + 48%)
= -8 —28% — 393 — 48*
+ 8% +28° 4 38* 4-48°
= 0S% — 18 — 18? — 183 — 18* +48°
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Opérateur inverse

(h* f)ln] (g% hx f)ln] = fln]

flo) —| Sp  — —{ S =8, —

Condition d’inversion: (g * h)[n] = 6[n]
Inversion BIBO stable < h, g € (1(Z)

Lopérateur de convolution Sy, : /o (R) — £ (R) est injectif si la condition S,{f1} =
Sn{fa} pour f1, fa € Lo (Z) implique que f1 = fo.

Propriété: S, est injectif sur /. (Z) ssi il existe g € ¢1(Z) tel que

(hx g)[n] = (g + h)[n] = é[n].

Dans ce cas, S;, admet un inverse de convolution S, = S, : £ (Z) — (oo (7).

Une condition nécessaire et suffisante pour 'existence de cet inverse avec g € ¢1(Z)
est que Hy(w) = Y, o7 h[n]e 1" (la réponse fréquentielle discréte de ) ne s'annule
pas pour w € [—7, 7| (Lemme de Wiener).
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Opérateur inverse: exemples

Opérateur h[n] gln] tel que (g * h)[n] = 6[n]
Sko d[n — ko] d[n + ko)
I —aS d[n] — ad[n — 1] unla™ € ,(Z)silal <1

ou —1[_.._1j[n]a™ € £1(Z) lorsque |a| > 1.

Dans certain cas, on peut aussi trouver un g ¢ ¢1(7Z) tel que (h x g)[n] = (g x h)[n] =
&[n], mais I'opérateur inverse correspondant S, = S; ' : D(Z) — D'(Z) est & manier
avec prudence.

Par exemple: (I —aS)~t =3">7 a™S" pour |a| > 1.
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Attention aux manipulations douteuses !
Thag : [ f*hag avec haig = 0[-] — 0[- — 1] n’est pas injectif sur £ (Z)
car Tp{a - po} = 0 pourtout @ € Ret pg[n] =1 € (o (Z).
On vérifie aisément que (u * hqig)[n] = (haig * u)[n] = o[n].
(uxhgg)*x1=(0x1)=1
ux (hag*x1) =ux0=0
Comme la convolution est (en principe) associative, peut-on en déduire que 1 =0 ?
A ul],1 ¢ 0,(2)
8-58
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Opérateurs de convolution ¢,(z) — ¢,(z)

m Inégalité de Young discréte

Théoreme
Pour tout f € ¢,,(Z) avecp > 1 eth € ¢1(Z), on a:

1A% flle, < NRlle |l flle, -

Ceci implique que I'opérateur de convolution f — h * f est £,-stable.

Les deux cas extrémes ou la conditions h € ¢1(Z) est aussi nécessaire:
m p = oo: Stabilité BIBO

m p = 1: Stabilité de composition
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Preuve de I'inégalité de Young discrete
On choisit p, p’ > 1 tels que \h[n”l = \h[n]}l/p \h[n]\l/p/ et on applique I'inégalité de Holder:

[(h* f)[n Z\hk]||fn— 1|

kEZ
1/p 1/p’
s(z|hmuf[n—kn”) (Z\hkn) |
kEZ kEZ |
1Rll/*"

En sommant et élevant a la puissance p, on obtient

S|t Hln < 1RGPS (Zlh[nll |f[n—k']|p>

nei ne?Z \keZ

||th/p SN |nfn]| [ flm)? (changement de variable)

NEZ meZ

=[R2 (Z \h[nﬂ) (Z If[m]|p>
= [RIETHN AR = (IBles - [1F1le,)”
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Equivalence LIT/LID

Lien avec la convolution continue: en utilisant la représentation continue des
signaux discrets

flnl fr(t) =Y fln]-6(t —nT)

g[n] passage discret—>continu> gT(t) _ Z g[n] ) (S(t . nT)
n

(f *g)ln] (frxgr)(t) =Y (f*g)n]-6(t —nT)

n

Un systéme LID est équivalent a un systéme LIT dont |la réponse
impulsionnelle prend la forme d'une somme d'impulsions de Dirac équidistantes:
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Table de convolutions discretes

fi[n] faln] (f1 = f2)[n]

fln] 6[n — no fln —no]

a™ uln) uln] (ﬁa” - ail) uln] sia#1
a” uln] b uln] (ﬁa" ~ ﬁb”) uln] sia+b
uln uln] (n+ uln] = s} [n]

s3] s3] s )

sN [n]a™ b uln] =gy - bhuln] — é e - shnla® sia# b
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8.6 TRANSFORMEE EN Z

= Définition

= Convolution/multiplication

= Echantillonnage

= Zone de convergence et inversion
= Propriétés de la transformée en z
= Rayon de convergence

= Lien avec les séries de Taylor

= Inversibilité

= Table de transformées en z
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Transformée en z: définition

Soit un signal discret, sa transformée en z se définit formellement par

F(z)=) fln]="

nez

Attention: méme notation (majuscule) que pour une transformée de Fourier.

En général, on ne cherche pas a évaluer la transformée en z pour des valeurs spécifiques
de z; on l'utilise pour ses propriétés

= algébriques: expression simple des systemes discrets
= de représentation:  f[-] (signal discret) < F'(z) (transformée en z = série formelle)

Exception: z = e/ ol w € [—, 7] (cf. Transformée de Fourier Discréte)

Pourquoi une sérieen 2z~ " et pas en 2" ?
Une convention arbitraire peu pratique mais, hélas, universelle. ..
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Convolution/multiplication

La transformée en z de la convolution discréte de deux signaux est le produit des deux
transformées en z

(f 8 g)[n] transformée en z F(Z) . G(Z)

Prewve: Y (fuglnl- = = X (S0 A gln - K]) = = X bl gl — K5

nes ne€L “keZ k€eZ e
= Zf[k] : (Z gln — k|- z‘") = Zf[k] . <Z glm] - Z—m—k)
kezZ ne’ kEZ meZ
=, A6
= F(z) - G(z)

Remarque: une multiplication arithmétique est une convolution (avant report des

dizaines)! 1.3x56=(1 -10°+ 3 107 (5 10°+ 6 -1071)
~— ~~ —~— ~—
flo] fl=1] g[0] gl-1]
= 1x5-10°4+(1x6+3x5)-100"+ 3x6 1072
—— — —— N——
(f*g)[0] (fxg)[—1] (f*g)[—2]
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Echantillonnage
Soit f[n] un signal discret dont la transformée en z est donnée par F'(z) = Z fln]z—".
o kEZ
F(z
(+ M) [n] =)
transformée en z
M—1 s2mTm
(M 1) ffn b F(amotr)
m=0
Preuves: > M)fln] 2 =D fm] -2 = F(M)
ner mez
=f[m]sin=m-M
et 0 sinon
M-1 M-1
ﬁ Z F(zl/Mej%J{/fm> = ﬁ Z f[n]z_”/Me_j%%
m=0 m=0 n€Z
M-1
=43 flale MY e
nez m=0
N————

=0 si (n mod M)##0
=M si (n mod M)=0

=D flm-Mlz"™ =) (M L) f[m] 2

meZ meZ
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Zone de convergence (ROC) et inversion
Rappel: F(z) = Z fln]z7"

ne

m ROC ("region of convergence") = zone de convergence

> finl=r

ne

ROC ={z€C: < o0}

m Inversion par intégration complexe (si F'(z) est analytique sur I')

1

fln] = o ]{ F(2)z" 'dz ouT estun contour fermé inclu dans ROC
Jm Jr

m Cas particulier ou ROC inclu le circle unité: {z = e“ : w € [—7, 7|}
1 & . .
_ Jw Jwn
fln] = g /_7r F(e“)e“"dw

Lien avec la transformée de Fourier en temps discret (voir Chap. 10)
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Propriétés de la transformée en z

Opération Signal discret Transformée en z
Définition fln] F(z2) £ fln]z"
nez
Linéarité a - f[n] + g[n] a-F(z)+G(z), YaeC
Décalage fln —no] z7 ™ F(z)
Retournement fl—n] F(1/z)
Sur-échantillonnage (1t M) f[n] F(zM)
Sous-échantillonnage (M })fn] &= 1\:—01 F(zl/MeJW“>
Multiplication par a™ a™ - f[n] F(z/a)
Multiplication par n n - fn] —zLF(z)
Convolution (f1 * f2)[n] Fi(z) - F5(2)
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Complément: Rayon de convergence

Pour les signaux a support semi-fini, la zone de convergence de la transformée en z
(ROC) peut étre spécifiée de fagon précise. Le critére déterminant est le comporte-

ment de f[n]| pour n — toc.

Définition: f[n| est a support semi-fini ssi il existe n tel que
= soit f[n] = 0 pour tout n < ng (support semi-fini positif)

= soit f[n] = 0 pour tout n > ny (support semi-fini négatif)

Si f[n] est a support semi-fini positif, alors F'(z) devient une série entiere en z~

dont le domaine de convergence est donné par

ROC = {z € C: |z > p;} ot py = limsup | f[n]|"/"

n—-+o00

Rappel: limsupu, = lim (sup uk)

n——+o00 n——+oo k>n
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Si f[n] est a support semi-fini négatif, alors F'(z) = > f[—n]z" devient une série

entiére en z dont le domaine de convergence est donné par

1

1
limsup | f[—n][/"

n—-+oo

ROC={z€C:|z|<p_}toup_ =

zeC

Et dans le cas ou

—1
lim sup | f[n]|*/" < <1im sup |f[—n]|1/”)

n—-+o00 n—-+oo
NS > N g
TV TV

P+ p—

F(z) est convergente dans la couronne

ROC={z€C: pp <|z|<p_-}

zone de
convergence
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Exemples

m  f[n] = §[n — ng] correspondant, au choix,
= a l'impulsion discrete localisée en ng
= au systeme LID S™° (décalage de ny échantillons)
est a support fini, d'ot p; = 0. On adonc F'(z) = z~ "™ avec ROC = C\{0}.

m f[n| = a™u[n] est a support semi-infini positifet p;. = |a|. On a donc

F(z) = Z a"uln]-z7"

ne”L
1
_ —1\" _ _ )
= ano(az ) = a1 avec ROC={z€C:|z] > |a|}
= f[n] = al”! est & support infini. On calcule p;. = |a| et p_ = |a|~'. Donc, silona |a| < 1
(le vérifier!)
F(2) L—d’ avec ROC ={z€C:la| <|z| <la|™'}
2) = ={z s a z a
(1 —az)(1—az"1)
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Lien avec les séries de Taylor

Soit f[n] a support semi-fini positif (n > ng). Si p. n'est pas infini, alors P(z) =
27" F(z~1) est une fonction analytique dans le disque |z| < p3'. Les f[n] sont donc
donnés par le développement de Taylor de P(z) autour de z = 0:

fln+nol = % : %(P(z))

z=0

De méme, soit f[n] a support semi-fini négatif (n < ng). Si p_ n’est pas nul, alors
2" F'(z) est une fonction analytique dans le disque |z| < p_. Les f[n] sont donc
donnés par le développement de Taylor de ="° F'(z) autour de z = 0:

o=l = - (7))

n! dzn

z2=0

Rappel: une fonction est analytique dans un domaine du plan complexe si sa
série de Taylor converge uniformément dans tout ce domaine.
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Inversibilité

Etant donné F(z), comment retrouver les coefficients f[n]? Ce probléme peut avoir
plusieurs solutions s'il existe des lieux dans C ou F'(z) n’est pas analytique.

: 1
u[n] Transformée enz> Z S pour |Z| <1
1—z-1
n>0
Transformée en z _n z 1
—u[—n — 1] /—Zz =, 1 . pour |z| < 1

n<—1

La solution est cependant unique dans chaque couronne ou H(z) est analytique.
Inverser la transformée en z revient donc a

1. Identifier la ou les couronnes {z € C : p; < |z| < p2} ou F(z) est analytique
(souvent, il suffit d'identifier les poles de F'(z)).

2. Dans chacune de ces couronnes, utiliser la formule fn] = = §. 2" ' F(z)dz
j2m
ou I' est un contour fermé contenu dans la couronne (p. ex. un cercle).

Remarque: Quand on sait par avance que f|[-] est a support semi-fini, il est plus simple
d’utiliser la méthode de la série de Taylor.
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Table de transformées en z
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fln] F(z) ROC = zone de convergence

d[n — no] z~"mo C\{0} sing >0, ouCsing <0
u[n] — {z€C:|z| > 1}
s¥[n] W {zeC:|z| > 1}
a™ uln] — {z€C:|z| >|a|}
—a"u[—n — 1] — {ze€C:|z| <|a|}
a™sY [n] m {z€C:lz| >|a|}
(—1)N+1gnsN[—pn — N — 1] m {ze€C: |z <|al}
Luln —1] —log(1—271) {zeC:|z| > 1}
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